23.09.2011 
- developping map projections
 
- evaluating/choosing a projected coordinate 
reference system
 
- map projection for representing spatial 
facts.
 
Map projections are used to map the surface of a mathematical Earth model 
like a sphere or 
ellipsoid onto a plane based on geometrical or mathematical rules, principles or constraints.
Map projections: Flattening 
the Earth by the way of a mapping surface
[Voser 1998,Voser 2003] 
Map projections have advantages for calculating geometric properties 
of spatial entities compared 
to the calculations of these properties on a curved Earth model. In the plane of the map projection, 
the calculation of distances, angles, directions and areas may be done based on the rules of the 
classical geometry (Euclidean geometry).
In opposition, the disadvantages of map projections are their 
geometric distortions which depend 
on the position together with the projection method, its instatiation and implementation. This 
results by the fact that it is not possible to map from a curved surface like a sphere or spheroid 
onto a plane without distortions.
The analysis of the deformations is done by applying principles of differential geometry: 
the laws of 
surface theory. There, its first fundamental treats the geometric intrinsics (metrics on 
surfaces). 
Thereby, the rules to describe lengths, angles, areas are derived on the Gaussian fundamentals.
The analysis of these geometric properties says, that there is no way to map from 
the surface of a 
sphere or ellipsoid onto a plane without distortion. Generically, angles, areas and length are 
distorted. But there exist ways to controll the mentioned deformations in an infinitesian matter.
Because of these distortions, map projections cover a wide field in mathematical cartography, 
or 
moreover, in geomatics. More than 200 types of map projections are known, and already the 
Ancient Greeks dealt this topic.
There exist various ways to classify map projections:
- the nature of the mapping 
surface(extrinsics of geometry)
 
- the distortion properties 
(intrinsics of geometry)
 
- the geographic use 
and extent
 
- other systematics (visual, mathematical 
properties...)
 
 
In the application, there exist much more individual instances of coordinate reference 
systems of 
type map projection. They vary not only in distortion properties, but also in their parameters as well 
as their method implementations. Important to know when working with map projections is the 
underlying Earth model and its geodetic datum.